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Abstract

Pre-trained language models such as BERT and XLNet have greatly improved the performance
of many NLP tasks. These models can capture rich semantic patterns from large-scale text corpora
and learn high-quality representations of texts. However, such models have shortcomings – they
underperform when faced with complicated noisy text or text that requires inference and/or external
knowledge to be understood. Therefore the focus of this PhD project will be on the learning of
knowledge for pre-trained language models. This project has two major goals. Firstly, I aim to explore
how to inject extra knowledge into large-scale pre-trained models. Secondly, I aim to investigate
how pre-trained language models acquire knowledge from fine-tuning data. I focus on two tasks:
Sentiment Analysis and Question Answering. In the first part of this project, I focus on injecting
knowledge into pre-trained models in sentiment analysis and question answering. I have made
progress in both areas, developing a state-of-the-art sentiment classifier for product reviews and an
unsupervised question answering system. For the second goal of this project, I have carried out
detailed analysis of extractive question answering data in order to gain insight into how models learn
from such data. My work to date has focused on data in the English language. For the remainder
of this project, I will explore other languages, including cross-lingual representations for sentiment
analysis and question answering, as well as understanding how multilingual data affects pre-trained
language models.

1 Introduction

Recent years have witnessed the emergence of pre-trained language models (PLMs) such as ELMo, GPT,
BERT, XLNet (Wang et al., 2018a; Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019a; Yang
et al., 2019), which have been widely used in many NLP tasks and have shown superior performance
compared to previous approaches (Devlin et al., 2019a; Qiu et al., 2020a). PLMs are firstly pre-trained on
large-scale unlabeled text corpora using self-supervised objectives, followed by fine-tuning on downstream
tasks with labeled data using supervised learning, resulting in a new paradigm for NLP research - pre-
training on large-scale unlabeled data + fine-tuning on small-scale labeled data. This has been shown to
surpass previous neural approaches trained only on labeled downstream task data (Devlin et al., 2019b).
Different from early approaches producing static word embeddings where each word only has one
embedding vector, PLMs produce contextualized word representations (Peters et al., 2018), where words
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have different representation vectors within different contexts. This is in line with the commonsense
assumption that the semantics of a word should not only depend on itself but also depend on its context.
Such modifications, powered with large neural models (Vaswani et al., 2017) and large-scale corpora, give
significant improvements on a wide range of NLP tasks including sentiment analysis, question answering
and natural language inference. Probing tasks have shown that the representations learned by PLMs
capture aspects of the semantics and syntax of language (Jawahar et al., 2019; Rogers et al., 2020).

Despite the success of pre-trained models in NLP, such models still lack the knowledge needed for
tasks which require information beyond the text such as sentiment analysis, entity typing and question
answering (Da and Kasai, 2019; Liu et al., 2020a). The incorporation of structured knowledge from
knowledge graphs has been explored in Zhang et al. (2019); Yu et al. (2020); He et al. (2020); Colon-
Hernandez et al. (2021); Wang et al. (2021), yielding improvements for various knowledge-intensive tasks
including named-entity recognition, relation classification, entity typing and question answering especially
for domains such as the medical domain. For example, in entity typing and relation classification, without
external entity knowledge such as knowledge base triples of the form <Entity1, Relation, Entity2>, it is
difficult for a pre-trained language model to produce the correct prediction even though it has captured
rich information from pre-training on huge volumes of unstructured text. In Zhang et al. (2019), the use
of entity information from knowledge graphs injected into the joint pre-training process in Devlin et al.
(2019b) substantially improves a model’s performance on entity-typing and relation extraction, where the
token-entity alignment objective aims to inject the entity information into the representations learned by
the transformer encoder.

Earlier work mainly focuses on incorporating structured knowledge from knowledge graphs (entity
knowledge and linguistic knowledge). An exploration of methods for injecting other external information
beyond text is lacking. Approaches for incorporating knowledge have been limited to learning joint
representations of text and knowledge, requiring substantial modifications to model architectures. Fur-
thermore, despite the success as well as the large volume of research conducted on PLMs (Qiu et al.,
2020a; Zhang et al., 2020), less emphasis has been placed on the effects of the data used for fine-tuning.
A better understanding of the data has the potential to improve the generalizability of models (Rogers,
2021; Gardner et al., 2021), as well as providing helpful information for constructing datasets (Bender
and Friedman, 2018; Geva et al., 2019). Thus, I will explore two major research questions, 1) how to
incorporate external knowledge beyond text into pre-trained language models and how to develop easier
approaches for injecting knowledge without substantial modifications to model architectures, 2) what are
the characteristics of fine-tuning data, how does fine-tuning data affect the performance of PLMs and
how do PLMs learn knowledge from fine-tuning data?

1.1 Research Questions

I propose two high-level research questions and each high-level research question is followed by two
specific research questions.

RQ1: How can we use external knowledge to improve the performance of pre-trained
language models?

The primary goal of RQ1 is to investigate how to use external knowledge beyond the normal fine-tuning
data that is commonly employed to improve the performance of PLMs on downstream tasks. I focus on
two tasks: document-level sentiment analysis and unsupervised question answering.

RQ1-1: How can we utilize the extra information in the metadata of product reviews to
improve document-level sentiment analysis?

The goal of Sentiment Analysis is to predict the sentiment conveyed by a piece of opinionated text (often
a review). In document-level sentiment analysis with user and product information, we also know the
user who wrote the review and the product being evaluated by the review. User and product context can
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be helpful for predicting the correct sentiment label: the same user may tend to use the same or a highly
similar narrative style as well as similar word choices when writing reviews. For example, a user who has
high expectations for the product being evaluated might use words like good, nice but only give a rating
medium positive or even use such positive words sarcastically to give a negative rating; similarly, the
reviews belonging to a particular product may have the same group of opinionated words and narrative
style towards the product being evaluated. Earlier work (Tang et al., 2015; Chen et al., 2016b; Ma et al.,
2017; Dou, 2017; Long et al., 2018; Amplayo, 2019; Amplayo et al., 2018) mainly focuses on modeling
users and products as embedding vectors which are updated in the training process, with the expectation
that such embedding vectors can implicitly learn the bias introduced by users and products. However,
such approaches fail to fully make use of the textual information of historical reviews belonging to a user
or a product, since it is difficult to learn meaningful representations of user and product if they are only
updated and learned by back propagation, especially for users and products who only have small number
of reviews. Therefore, RQ1-1 will focus on how to model the historical reviews of a user and product
to learn more meaningful representations of user and product context for the purpose of improving the
prediction of sentiment labels.

RQ1-2: How can we leverage linguistic knowledge and summarization data to improve
Unsupervised Question Answering?

The goal of Question Generation (QG) is to generate plausible questions for given <passage, answer>
pairs. QG can be applied in dialogue systems as well as education (Graesser et al., 2005) and as a data
augumentation method for Question Answering (QA) (Puri et al., 2020). There are two classes of QG
approaches: 1). Template-based QG (Heilman and Smith, 2009, 2010) which uses heuristics induced
from linguistic knowledge to transform declarative sentences into questions. It has the shortcoming that
the generated questions have high lexical overlap with the source text since template-based approaches
only manipulate the existing constituents in the source text; 2). supervised QG (Du et al., 2017; Duan
et al., 2017; Zhang and Bansal, 2019; Chen et al., 2019; Xie et al., 2020; Ma et al., 2020; Ji et al., 2021)
which uses existing QA datasets to train a QG system. A disadvantage of the supervised approach is that
it heavily relies on the availability of QA datasets which can cost a lot to obtain and are heavily tied to a
certain domain/language. RQ1-2 will explore how to combine the advantages of the template-based and
supervised methods as well as address the shortcomings in both approaches. The generated questions
will then be used to train an unsupervised QA system.

RQ2: How does the fine-tuning data influence the performance of pre-trained language
models?

I will analyse the effect of fine-tuning data on the performance of PLMs. I will firstly explore how
PLMs learn from different parts of the fine-tuning data. Then I will focus on multilingual data and
investigate how it influences models’ performance and how to make the best use of it. This research
question will focus more on data than modelling. Again, the focus will be on sentiment analysis and
question answering.

RQ2-1: How does a machine learning model (typically a neural model) learn from senti-
ment analysis and QA data - which part of the data accounts for the model’s performance
on dev/test set?

After the emergence of PLMs, substantial improvements have been obtained on many NLP tasks including
Sentiment Analysis and QA (Qiu et al., 2020b; Bommasani et al., 2021). However, we still cannot neglect
the importance of the dataset, and indeed this has become a new focus of NLP research (Søgaard et al.,
2021; Lewis et al., 2021; Liu et al., 2021). However, the following questions remain: How does a PLM
learn from a dataset - which part of the dataset is essential to correctly predict the ground-truth outputs
in dev/test set? Is there any biased, flawed or even falsely annotated data in the dataset and how can
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such data affect model performance? What knowledge do models learn from the dataset? How can we
measure model’s robustness and generalizability by inspecting the training dataset? RQ2-1 will focus
on analysing how a pre-trained model learns from a dataset using Sentiment Analysis and Question &
Answering datasets as the testbed.

RQ2-2: Exploring multilingual representations and analysing their role in learning from
multilingual corpora

Multilingual data has been widely used in NLP, especially in machine translation (Sennrich et al., 2016;
Kondratyuk and Straka, 2019) and PLMs (Conneau and Lample, 2019; Rogers et al., 2020; Liu et al.,
2020b). When training models using multilingual data, the data in resource-rich languages can be
helpful for improving the performance on low-resource languages (Adams et al., 2017; Gu et al., 2018).
In multilingual learning, I observed that different languages share a single backbone model, the only
difference is their embedding matrix. Hence there is the possibility that using multilingual data is
approximately a form of data augmentation. Since we feed data in different languages to the same
backbone model, the weights of the model will be updated more compared to the model trained on
monolingual data. However, questions like how multilingual data affects model performance and the
difference between multilingual models and monolingual models still remain under-investigated. RQ2-2
will explore the learning mechanism when using multilingual data to train a PLM.

1.2 Outline

Background information including the development of pre-training techniques is provided in Section 2,
progress so far in Section 3.

2 Background

In this section, I will give an overview of the material which is relevant for this Ph.D. project. In particular,
I will first describe the development of pre-training techniques. There are two dimensions to categorizing
pre-training techniques. The first is feature-based pre-training approaches (word2vec, GloVe„ ELMo)
versus non feature-based approaches (GPT, BERT), the second is non-contextualized word embeddings
(word2vec, GloVe) versus contextualized word representations (ELMo, GPT, BERT). Some representative
approaches will be discussed briefly in the following sections. Lastly, I will discuss the research which
is related to our main research questions concerning how to inject knowledge into pre-trained language
models.

2.1 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Following the significant success of PLMs such as ELMo (Peters et al., 2018) and GPT (Radford et al.,
2018), Devlin et al. (2019b) propose a new pre-trained model, BERT, which adopts new objectives in the
pre-training stage and has been widely used in NLP research especially in natural language understanding
tasks. BERT uses the transformer (Vaswani et al., 2017) as its building block which is same as the neural
architecture used in GPT. To pre-train BERT model on large text corpora (Devlin et al., 2019b), two
objectives - Masked Token Prediction and Next Sentence Prediction are used:

Masked Token Prediction (Devlin et al., 2019b) make use of large-scale text corpora to create a
masked token prediction objective by masking a certain proportion of tokens in the original sequence
and then training BERT model to recover the masked tokens based on the unmasked tokens. Specifically,
supposing that for a given sequence (w1, w2, ......, wn), we randomly mask some tokens w in the original
sequence by replacing masked token w with a special token [MASK], the indices of masked tokens are
denoted as Î and the original indices of all tokens including masked tokens and unmasked tokens are
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denoted as I , the indices for unmasked tokens are represented as I − Î . We input the edited sequence
(w1, w2, ......, wn) in which some tokens are replaced with [MASK] to the BERT model and aim to predict
the original replaced tokens. Therefore the objective of Masked Token Prediction can be formulated as:

J1(θ) = logP (Ŵ |W̃ ) =
∑
i∈Î

logP (wi|wj1 , wj2 , ......, wjn ; jk ∈ {I − Î}) (1)

where Ŵ and W̃ represent masked tokens and unmasked tokens respectively. Note that in BERT
the predictions of masked tokens depend on the context on both directions, which differs from the
causal language modeling in GPT where the prediction of the next token only depends on the historical
context. This is also different from the language modeling objectives in ELMo. Although ELMo adopts a
bidirectional LM, it only makes use of the context from a certain direction (either forward or backward)
when predicting a word. The design of Masked Token Prediction allows BERT to model language
dependencies bidirectionally by utilizing the information from bidirectional contexts.

Next Sentence Prediction In order to model the dependencies between units larger than words,
Devlin et al. (2019b) propose Next Sentence Prediction working with Masked Token Prediction, which
concatenates two sentences (sentence A and sentence B), inputs the sequence to BERT model, then
predicts whether these sentence B is the sentence following sentence A in the original article. The positive
examples {A,B} can be taken from articles in the corpus, negative examples {A, B̃} can be created by
fixing sentence A and randomly drawing sentence B̃ from the corpus. The optimization objective of Next
Sentence Prediction can be formulated as:

J2(θ) =
∑

{A,B}∈D

logP (y|A,B) +
∑

{A,B̃}∈D̃

logP (1− y|A, B̃) (2)

where D and D̃ represent the collections of positive and negative examples respectively, y ∈ {0, 1}
is the label for whether B is the next sentence of A. If y is the label for positive examples, the label for
negative examples is 1− y.

The overall objective for the optimization of parameters θ of BERT model is J(θ) = J1(θ) + J2(θ).
In experiments, BERT is firstly pre-trained on BookCorpus (Zhu et al., 2015) and English Wikipedia
which contain 800 million and 2500 million words respectively. Then BERT is then transferred to
downstream tasks with minor modifications to model architecture - only a few layers need to be added,
according to the experimental results in Devlin et al. (2019b). BERT greatly improves the performance
on many NLP tasks compared to state-of-the-art approaches, especially on the GLUE benchmark (Wang
et al., 2018b) where the improvement is 7.7% absolute points. When employing BERT in downstream
tasks, the whole model architecture including the word embedding matrix in the lower layer will be
used. That is different from word2vec/GloVe which only transfers the learned static word embeddings to
downstream tasks (Mikolov et al., 2013; Pennington et al., 2014).

2.2 Incorporating Structured Knowledge into Pre-trained Language Models

Although the contextualized word representations learned by large-scale pre-trained language models
encode rich syntactic and semantic information (Jawahar et al., 2019; Clark et al., 2019a,b; Tenney
et al., 2019), they still lack certain knowledge such as world knowledge from knowledge graphs, factual
knowledge as well as commonsense knowledge that are crucial for certain tasks especially knowledge-
intensive tasks. For example, although models like BERT can capture the co-occurrences among Apple,
Tim Cook, CEO, they cannot establish explicit connections that Tim Cook is the CEO of Apple. Such
knowledge needs to be explicitly injected into pre-trained models Zhang et al. (2019). Also pre-trained
models lack factual knowledge. Taking BERT as an example, if we mask CEO and substitute Apple with
Microsoft in Tim Cook is the CEO of Apple, the resulting sentence is Tim Cook is the [MASK] of Microsoft,
the masked token predicted by BERT is CEO with a high probability. Moreover, pre-trained models lack
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commonsense knowledge. For instance they cannot detect that how many eyes does the Earth have? is an
nonsensical question. Such knowledge cannot be captured through self-supervised pre-training on text
corpus, supervisory signals from an external knowledge base are needed for pre-trained language models.

Various approaches have been investigated and employed to incorporate knowledge into PLMs (Sun
et al., 2019; Zhang et al., 2019; Peters et al., 2019; Yu et al., 2020; Qiu et al., 2020a; Roy and Pan, 2020;
He et al., 2020; Colon-Hernandez et al., 2021; Lyu et al., 2020b; Wang et al., 2021; Wei et al., 2021).
Most of them focus on injecting structured knowledge into pre-trained language models. I will present
two examples: ERNIE – incorporating entity knowledge in pre-training stage – and K-BERT – injecting
domain-specific knowledge information in fine-tuning and inference phase.

ERNIE: Incorporating entity knowledge into language models In order to enrich the text representa-
tions with informative entities for better language understanding, Zhang et al. (2019) propose to inject
entity information from an external knowledge base into pre-trained language models. In Zhang et al.
(2019) the text sequence is alligned with corresponding entities. The proposed model ERNIE comprises
a text encoder and a knowledge encoder. The text encoder, which is adopted from BERT, is used to
encode the text. The knowledge encoder, which is the proposed key component, is responsible for fusing
entity representations and textual representations. The objective of ERNIE is to randomly mask the
aligned <word,entity> pairs (e.g. by masking <entity> there will be no entity information fused into
the representations of <word>) then train ERNIE model to predict the masked entity based on the fused
representations.

In experiments, ERNIE is pre-trained on English Wikipedia containing 4500 million subwords (John-
son et al., 2017; Kudo and Richardson, 2018), the entity embeddings are obtained from Wikidata
using TransE (Bordes et al., 2013). The experimental results show that ERNIE outperforms BERT on
knowledge-rich tasks including relation classification and entity typing. ERNIE also obtains comparable
performance with BERT on other common NLP tasks, demonstrating the efficacy of the knowledge fusion
approach.

K-BERT: Injecting knowledge graph into BERT for enhanced language representations Different
from (Zhang et al., 2019) where the entity knowledge is injected during the pre-training phase, Liu et al.
(2020a) propose to incorporate knowledge in fine-tuning and inference phase by explicitly injecting
knowledge graph information into text sequences. Their aim in doing this is to reduce the required
computational resources for pre-training and knowledge graph embeddings. K-BERT firstly uses the
entity information in sequence (w1, w2, ......, wn) to obtain the relevant < entity1, relation, entity2 >
triples from a knowledge graph, then these triples are injected into the original sequence directly
by appending < relation, entity2 > to < entity1 > in the sequence. For examples, if a triple
< Bill_Gates, CEOof ,Microsoft > is retrieved for sentence Bill Gates calls for ‘Green industrial
revolution’ to beat climate crisis, then K-BERT will inject the triple into the sentence by modifying it
to: Bill Gates CEO of Microsoft calls for ‘Green industrial revolution’ to beat climate crisis. It is worth
noting that although CEO of Microsoft is inserted between Bill Gates and calls for ..., CEO of Microsoft
still shares the same position embeddings Vaswani et al. (2017) with calls for .... In other words, the
injection of CEO of Microsoft won’t affect the original order of the sentence. After the injection of entity
triples, the modified sequence can be fed into the transformer encoders.

Note that the design of K-BERT enables the incorporation of any domain knowledge graph for specific
tasks without pre-training and knowledge embeddings since the entity and relation information can be
directly injected into the text sequence. Therefore when employing K-BERT for specific tasks, one should
use the same pre-training objectives as BERT (Devlin et al., 2019b) or directly initialize the transformer
encoders using a public Google BERT model (Devlin et al., 2019b) then use appropriate knowledge
graphs in the fine-tuning stage to inject entity and relation information into the text sequences and train
K-BERT with task-specific objectives. In the experiments of (Liu et al., 2020a), K-BERT is pre-trained
on Chinese corpora including WikiZh and WebtextZh, and the knowledge graphs used in downstream
tasks include CN-DBpedia (Xu et al., 2017), HowNet (Dong et al., 2010) and MedicalKG. Experimental
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results show K-BERT outperforms vanilla BERT on text classification tasks for the e-commerce domain,
XMLI (Conneau et al., 2018) and domain-specific NER.

3 Progress

In this section, I will discuss my current progress and how it relates to the research questions listed in
Section 1.

3.1 Improving Document-Level Sentiment Analysis with User and Product Context

RQ1-1 aims to explore how to encode extra information beyond the review texts to improve document-
level sentiment analysis. Specifically, I focus on how to utilize the user and product context information
(the user and product IDs are known for a review), to improve the accuracy of modeling the sentiment
conveyed by a review. I propose an approach explicitly using the historical reviews for a certain user and
a product as extra information to help the prediction of review sentiment. I will discuss the motivation for
my approach and show the experimental results conducted on benchmark datasets of sentiment analysis
including Yelp-2013, Yelp-2014 and IMDB (Tang et al., 2015). This section is based on our paper,
Improving Document-Level Sentiment Analysis with User and Product Context, published in the COLING
2020 main conference (Lyu et al., 2020a).

Figure 1: Utilizing all historical reviews of corresponding user and products (left); overall architecture of
our model, where Eu and Ep are user and product representations (right).

Motivation Generally, there are two reasons to take user and product context into consideration when
predicting the sentiment of a review. Firstly, the reviews from a given user tend to reflect their word
uses when conveying sentiment. For example, a typical user might use words like excellent service with
correspondingly high ratings but another user could use the same words sarcastically with a low rating.
Secondly, a group of reviews of the same product could contain terms conveying sentiment that is specific
to that product. For example, the historical reviews for a camera product could give hints for what a
good/bad camera is and which aspects are important for a camera. These hints may not be useful when
evaluating other products such as clothes because word patterns expressing positive sentiment towards
cameras do not necessarily convey positive sentiment towards clothes. The idea of using historical
reviews is depicted in Figure 1 (left). Earlier work mainly focuses on modeling user and product IDs as
embedding vectors whose parameters are learned during training. Such approaches have the shortcoming
that the user and product embeddings ,that are only updated by back propagation and learned implicitly,
cannot fully capture the word use of a particular user and product, especially when a user or product
only has a small number of reviews. Therefore, I propose to directly make use of the textual features
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of historical reviews for a user and a product by explicitly storing the representations of all historical
reviews belonging to a user and product. These historical reviews representations will be produced by a
PLM as such representations contain rich syntactic and semantic information (Jawahar et al., 2019; Clark
et al., 2019b). I will describe the details of my approach in the next section.

Methodology An overview of the model architecture is shown in Figure 1 (right). The model has
two main components: a document (review) encoder and a user-product matrix. With each training
sample, I firstly use the document encoder to obtain the textual representations of the review, which
are then fed into two stacked attention layers where the corresponding user embedding and product
embedding serve as keys to generate user-biased document representations and product-biased document
representations. Then, I feed the biased document representations into a linear layer followed by a softmax
layer to get the distribution of the sentiment label. Finally, these two biased document representations
are incrementally added to the embeddings of the current user and product review. The updated user
and product embeddings are subsequently stored in the user-product matrix as the new user and product
representations.

The input to our model consists of d = {w1, w2, ......, wL′}, u, p, which are the document, the user
id and the product id respectively. u and p are both projected to embedding vectors, Eu, Ep ∈ Rh

respectively, where Eu, Ep are transformed from the corresponding entries in the user embedding matrix
and product embedding matrix. d = {w1, w2, ......, wL} is fed into the BERT encoder to generate a
document representation Hd = {h1, h2, ....., hL} ∈ RL×h where L is the length of the document after
tokenization. We then inject Eu and Ep, to obtain the user-product biased document representation
through stacked multi-head-attention (Vaswani et al., 2017)(Q,K, V ), where Q ∈ RLQ×h, K ∈ RLK×h,
V ∈ RLV ×h. Generally, LK = Lv. In our approach, Eu and Ep are regarded as W , Hd as K and V .
The user-product biased document representations are computed by:

Ct
u = stacked-attention(Eu, Hd, Hd) Ct

p = stacked-attention(Ep, Hd, Hd) (3)

where Ct
u = attention(Ct−1

u ), C0
u = Eu (similarly for Ct

p), and t is the number of layers of the attention
function. In Equation (3), Ct

u ∈ Rh, Ct
p ∈ Rh.

We then fuse the general textual representation and user-product specific representation into biased
document representation:

Hbiased = Hcls + zu ⊙ Ct
u + zp ⊙ Ct

p (4)

where Hcls ∈ Rh is the final hidden vector of the [CLS] token Devlin et al. (2019b) and ⊙ is
element-wise product, zu and zp are importance vectors controlling the contribution of user-biased
and product-biased representations to sentiment label prediction: zu = σ(WzuC

t
u + WzhHd + bu)

and zp = σ(WzpC
t
p + WzhHd + bp). By doing so Hbiased ∈ Rh is able to capture user and product

preferences.
Finally, we feed the biased document representation Hbiased into a linear layer followed by a softmax

layer to obtain the distribution of the sentiment label (p(y|di, ui, pi) for a particular example (di, ui, pi).
We use Cross-Entropy function to calculate the loss between the predictions of our model and

ground-truth labels:

J(θ) = −
n∑

i=1

m∑
j=1

yi,jlog(p(yi,j |di, ui, pi)) (5)

where n is the number of samples and m is the number of all classes, yi,j represents the actual probability
of the i-th sample belonging to classj , yi,j is 1 only if the i-th sample belongs to classj otherwise it’s 0.
p(yi,j |di, ui, pi) is the probability the i-th sample belongs to classj predicted by our model.
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We implement the idea of utilizing all historical reviews written by u and all reviews about p
by incrementally adding the current user/product-specific document representation Ct

u and Ct
p to the

corresponding entries Eu and Ep in the embedding matrix at each step during training:

E
′
u = σ(Eu + λuC

t
u) E

′
p = σ(Ep + λpC

t
p) (6)

where λu ∈ R and λp ∈ R are both learnable parameters controlling the degree to which the representation
of the current document should be employed.

After Eu has been updated at every step during the training process, it can memorize all reviews
attached to the corresponding user, the same for Ep.

Datasets Classes Documents Users Products Docs/User Docs/Product Words/Doc

IMDB 1–10 84,919 1,310 1,635 64.82 51.94 394.6
Yelp-2013 1–5 78,966 1,631 1,633 48.42 48.36 189.3
Yelp-2014 1–5 231,163 4,818 4,194 47.97 55.11 196.9

Table 1: Statistics of IMDB, Yelp-2013 and Yelp-2014.

Experiments The experiments are conducted on three benchmark datasets of document-level sentiment
analysis: Yelp-2013, Yelp-2014 and IMDB (Tang et al., 2015). The statistics of the three datasets are
shown in Table 1. The evaluation results are shown in Table 2. Our proposed model is named IUPC
(Incorporating User-Product Context). The first two rows are baseline models: BERT VANILLA which
is the basic BERT model without user and product information, i.e. only review text, and IUPC W/O

UPDATE, which is the same as our proposed model except that we do not update the user and product
embedding matrix by incrementally adding the new review representations. We run BERT VANILLA, IUPC

W/O UPDATE and IUPC five times and report the average Accuracy and RMSE. The subscripts represent
standard deviation. The third row shows our proposed model, the baseline models included in comparison
are: CHIM (Amplayo, 2019), CMA (Ma et al., 2017),DUPMN (Long et al., 2018),HCSC (Amplayo
et al., 2018), HUAPA (Wu et al., 2018), NSC (Chen et al., 2016b), RRP-UPM (Yuan et al., 2019),
UPDMN (Dou, 2017), UPNN (Tang et al., 2015).

IMDB Yelp-2013 Yelp-2014

Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

BERT VANILLA 47.90.46 1.2430.019 67.20.46 0.6470.011 67.50.71 0.6210.012
IUPC W/O UPDATE 52.10.31 1.1940.010 69.70.37 0.6050.007 70.00.29 0.6010.007
IUPC (our model) 53.80.57 1.1510.013 70.50.29 0.5890.004 71.20.26 0.5920.008

UPNN 43.5 1.602 59.6 0.784 60.8 0.764
UPDMN 46.5 1.351 63.9 0.662 61.3 0.720
NSC 53.3 1.281 65.0 0.692 66.7 0.654
CMA 54.0 1.191 66.3 0.677 67.6 0.637
DUPMN 53.9 1.279 66.2 0.667 67.6 0.639
HCSC 54.2 1.213 65.7 0.660 67.6 0.639
HUAPA 55.0 1.185 68.3 0.628 68.6 0.626
CHIM 56.4 1.161 67.8 0.641 69.2 0.622
RRP-UPM 56.2 1.174 69.0 0.629 69.1 0.621

Table 2: Experiment results on IMDB, Yelp-2013 and Yelp-2014. Following previous work, we use
Accuracy (Acc.) and Root Mean Square Error (RMSE) for evaluation. We show the average results of
five runs, the subscripts stand for variance of all runs.
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Figure 2: Example questions generated via heuristics informed by semantic role labeling of summary
sentences using different candidate answer spans

As observed from Table 2, our model IUPC achieves the best classification accuracy and RMSE on
Yelp-2013 and Yelp-2014, and the best RMSE on IMDB, Yelp-2013 and Yelp-2014. IUPC outperforms
previous state-of-the-art results by 1.5 accuracy and 0.042 RMSE on Yelp-2013, by 2.1 accuracy and
0.029 RMSE on Yelp-2014, and by 0.01 RMSE on IMDB. Moreover, it outperforms the two baselines,
BERT VANILLA and IUPC W/O UPDATE in both classification accuracy and RMSE on all three datasets.
The classification accuracy of our model on IMDB is lower than many of the previous models. We
suspect this is because the BERT model is not good at handling longer documents since the input length
to BERT is fixed and the average length of documents in the IMDB dataset is much longer than the other
two datasets, as shown in Table 1. However, it is worth noting that our model achieves the lowest RMSE
which means the predictions of our model are closer to the gold labels. The empirical results prove the
effectiveness of our proposed approach explicitly using historical reviews for a given user and product,
addressing RQ1-1.

3.2 Improving Unsupervised Question Answering via Summarization-Informed Question
Generation

For RQ1-2, I focus on incorporating syntactic and semantic knowledge as well as summarisation data to
facilitate unsupervised question generation. I propose a summarisation-informed question generation
approach utilizing dependency parsing, named-entity recognition and semantic role labeling, which
is extrinsically evaluated on unsupervised QA. Experimental results show that my proposed approach
outperforms previous unsupervised QA models with fewer QA examples. This section is based on our
paper, Improving Unsupervised Question Answering via Summarization-Informed Question Generation,
published in the EMNLP 2021 main conference (Lyu et al., 2021).

Motivation Question Generation (QG) is a task that aims to generate a plausible question for a given
<passage, answer> pair. Previous work on QG can be categorized into:

1. Template-based QG that uses rules induced from syntactic knowledge to manipulate constituents
in a declarative sentence to transform it to an interrogative sentence. Although template-based
methods are capable of generating linguistically correct questions, the resulting questions often
lack variety and incur high lexical overlap with corresponding declarative sentences. For example,
the question generated from the sentence Stephen Hawking announced the party in the morning,
with Stephen Hawking as the candidate answer span, could be Who announced the party in the
morning?, with a high level of lexical overlap between the generated question and the declarative
sentence. This is undesirable in a QA system Hong et al. (2020) since the strong lexical clues in
the question would make it a poor test of real comprehension.
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Figure 3: An overview of our approach where Answer and Question are generated based on Summary by
the Question Generation Heuristics, the Answer is combined with the Article to form the input to the
Encoder, the Question is employed as the ground-truth label for the outputs of the Decoder.

2. Supervised QG that uses the <passage, answer, question> triples in existing QA datasets to train a
neural Seq2Seq generation model. This heavily relies on the availability of QA datasets that are
costly to obtain, and QA datsets are heavily tied to a certain domain or language where there might
not be sufficient QA data to train a QG model.

Methodology In order to overcome the shortcomings mentioned above, we propose an unsupervised
QG method that frames question generation as a summarization-questioning process where we employ
summarisation data to generate questions from summaries using heuristics based on syntactic and semantic
parsing (similar to template-based approaches). Generating questions based on summaries results in
questions sharing fewer words with the original passages as summaries are abstractly summarised from
passages. An example is shown in Figure 2. The summary is used as a bridge between the questions and
passages. Because the questions are generated from the summaries and not from the original passages,
they have less of a lexical overlap with the passages. Crucially, however, they remain semantically close
to the passages since the summaries by definition contain the most important information contained in
the passages. A second advantage of this QG approach is that it does not rely on the existence of a QA
dataset, and it is arguably easier to obtain summary data in a given language than equivalent QA data
since summary data is created for many purposes (e.g. news, review and thesis summaries) whereas
many QA datasets are created specifically for training a QA system. An overview of the proposed
summarisation-informed QG is shown in Figure 3. By employing summarisation data, we have <passage,
summary> pairs. We then parse the summaries. We then apply QG heuristics to the parsed summaries to
obtain generated questions and answers. Finally, we pair the generated answers with the original passages
to form the input sequence and use the generated questions as output targets for training a neural QG
system using Negative Log Likelihood Loss.

To parse the summary sentences, we employ three syntactic and semantic analyzers: Dependency
Parsing (DP), Named-Entity Recognition (NER) and Semantic Role Labeling (SRL). DP is used to
identify the main verb (root verb in the dependency tree) as well as other constituents useful in QG.
NER is responsible for tagging all entities in the summary sentence to facilitate the generation of the
most appropriate question words. SRL is the key component of our QG heuristics. We use SRL to
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parse summary sentences to a semantic frame format: who did what to whom, where the did (verb) is
the pivotal component followed by a set of arguments in the sentence. The arguments in a summary
sentence are answer candidates used to generate appropriate question words (wh-words). For example
ARG-0 is usually the Agent argument in a sentence that initiates the action described by the verb in the
semantic frame. Its corresponding wh-words can be what or who depending on the entity information in
it, ARG-TMP represents temporal arguments corresponding to wh-words when and locative argument
ARG-LOC results in wh-words where.

For example, given the sentence U2’s lead singer Bono has had emergency spinal surgery after
suffering an injury while preparing for tour dates and given the semantic frame obtained from SRL:
[U2’s lead singer Bono ARG-0] has [had VERB] [emergency spinal surgery ARG-1] [after suffering an
injury while preparing for tour dates ARG-TMP]., three questions can be generated based on arguments
ARG-0, ARG-1 and ARG-TMP: (i) Who has had emergency spinal surgery after suffering an injury
while preparing for tour dates? (ii) What has U2’s lead singer Bono had after suffering an injury while
preparing for tour dates? (iii) When has U2’s lead singer Bono had emergency spinal surgery?

The pseudocode for our algorithm to generate questions is shown in Algorithm 1. We first obtain

Algorithm 1: Question Generation Heuristics
S = summary, srl_frames = SRL(S), ners = NER(S), dps = DP (S)
examples = []
for frame in srl_frames do

root_verb = dpsroot
verb = frameverb
if root_verb not equal to verb then

continue
end
for arg in frame do

wh∗ = identify_wh_word(arg, ners)
base_verb, auxs = decomp_verb(arg, dps, root_verb)
Qarg = wh_move(S,wh∗, base_verb, auxs)
Qarg = post_edit(Qarg)
examples.append(context,Qarg, arg)

end
end

all dependency edges and labels (dps), NER tags (ners) and SRL frames (srl_frames) of a summary
sentence S. Secondly, we skip the frames in which the verb is not the root_verb (the verb whose
dependency label is root). We then iterate through all arguments in the frame of the root_verb and
identify appropriate wh-words (wh∗) for each argument using the function identify_wh_word according
to its argument type and its NER tag. We follow Heilman and Smith (2009) in using the standard English
wh-words associated with appropriate argument types and NER tags. We then decompose the current
main verb to its base form (base_verb) and appropriate auxiliary words (auxs) in the decomp_verb
function, before finally inserting the wh-words and the auxiliary verbs in the appropriate positions. We
use the wh_move function to move the wh∗ and auxs to appropriate positions in the question. Finally,
we have a set of generated questions associated with the corresponding answer and context passage after
some simple post-processing (such as appending a question mark ?).

Experiments To answer RQ1-2 (see Section 1.1) and evaluate the effectiveness of our proposed
approach, we use extrinsic evaluation – unsupervised QA as the use of traditional metrics such as
BLEU Papineni et al. (2002), ROUGE Lin (2004) and Meteor Banerjee and Lavie (2005) has been
questioned Callison-Burch et al. (2006); ?); Ji et al. (2022). We use the summarisation-informed QG
system (Lewis et al., 2020) to generate synthetic QA data based on Wikipedia, then we apply the synthetic
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SQuAD1.1 NQ TriviaQA

Models EM F-1 EM F-1 EM F-1

SUPERVISED MODELS

BERT-base 81.2 88.5 66.1 78.5 65.1 71.2
BERT-large 84.2 91.1 69.7 81.3 67.9 74.8

UNSUPERVISED MODELS

Lewis et al. (2019) 44.2 54.7 27.5 35.1 19.1 23.8
Li et al. (2020) 62.5 72.6 31.3 48.8 27.4 38.4
Our Method 65.6 74.5 46.0 53.5 36.7 43.0

Table 3: In-domain experimental results of supervised and unsupervised methods on SQuAD1.1, NQ and
TriviaQA. The highest scores of unsupervised methods are in bold.

NewsQA BioASQ DuoRC

EM F-1 EM F-1 EM F-1

Lewis et al. (2019) 19.6 28.5 18.9 27.0 26.0 32.6
Li et al. (2020) 33.6 46.3 30.3 38.7 32.7 41.1
Our Method 37.5 50.1 32.0 43.2 38.8 46.5

Table 4: Out-of-domain experimental results of unsupervised methods on NewsQA, BioASQ and DuoRC.
The results of two baseline models on NewsQA are taken from Li et al. (2020) and their results on
BioASQ and DuoRC are from fine-tuning a BERT-large model on their synthetic data.

QA data to unsupervised QA by using it for training a QA system1 from scratch. We firstly conduct
unsupervised QA experiments on three Wikipedia-based QA datasets (in-domain): SQuAD1.1 (Rajpurkar
et al., 2016), Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017). The results are
shown in Table 3. The baseline models used for comparison are Lewis et al. (2019) and Li et al. (2020).
We also include supervised models BERT-base and BERT-large for comparison. The results show that
our approach outperforms previous state-of-the-art unsupervised QA models on three in-domain datasets
especially on NQ and TriviaQA (more than 10 points improvements on Exact Match score). We further
apply our approach on three QA datasets from other domains (out-of-domain): NewsQA (Trischler et al.,
2017) BioASQ (Tsatsaronis et al., 2015), DuoRC (Saha et al., 2018). Experimental results are shown
in Table 4. Our approach also outperforms other unsupervised QA methods on out-of-domain datasets,
suggesting that our approach has better transferability.

Moreover, we conduct additional experiments investigating the effects of the size of synthetic QA
data. Results are shown in Figure 4 where we use an increased amount of synthetic QA data to train a QA
system and evaluate its performance on NQ and SQuAD1.1. As observed from Figure 4, our method
can achieve competitive performance with much less data (with only 20k QA examples), demonstrating
the data-efficiency of our method. However with more synthetic QA examples, the performance of QA
systems does not improve. We think the reason behind that is, with the increased size of synthetic QA
data, models learn too much noise We also evaluate our approach in a few-shot setting where we use a few
labeled QA examples. We conduct experiments on NQ and SQuAD1.1. Evaluation results in Figure 5
show that our approach performs better compared to Li et al. (2020) and BERT-large especially when
there are only a few labeled QA examples available.

1The QA model we used is BERT-large-whole-word-masking. which is referred to as BERT-large in this project
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3.3 Analysing Extractive Question Answering Data

The goal of RQ2-1 is to investigate how pre-trained language models learn knowledge from QA datasets.
Specifically, I explore how PLMs learn from QA examples of different question types and difficulty
levels. Moreover, I examine whether QA models learn real comprehension by perturbing answers in QA
examples. I will introduce more details of our methodology and experiments in the next sections. This
section is partially based on our paperExtending the Scope of Out-of-Domain: Examining QA models in
multiple subdomains published in ACL 2022 Workshop on Insights from Negative Results in NLP (Lyu
et al., 2022).

Introduction There have been several studies analysing QA models and data (Chen et al., 2016a;
Kaushik and Lipton, 2018; Weissenborn et al., 2017). Specifically, Jia and Liang (2017) explore
the effect of adversarial examples on the performance of QA systems; Lewis et al. (2021); Liu et al.
(2021) investigate the train-test data overlap and generalization problems in Open Domain QA and
Al-Negheimish et al. (2021) use corrupted QA examples to examine the numerical reasoning ability of
current QA systems. However, these studies only focus on a specific aspect of QA data. Following these
earlier studies, we aim to explore QA data more broadly and provide deeper insights on how QA systems
learn from QA data, especially for a pre-trained model. We conduct three experiments with two English
extractive QA datasets:

1. We categorize QA examples by their question type (Li and Roth, 2002) and train a QA system
using QA examples from each question type. We find that models learn relatively independently of
examples from other question types. In other words, the performance on each question type mainly
comes from the data of that same question type;

2. We divide QA examples into easy and difficult examples according to their context-question lexical
overlap. Examples with low overlap are defined as difficult examples, examples with high overlap
are defined as easy examples. We also modify the context in QA examples. Examples with the
original full context are defined as difficult, examples with single-sentence context are defined as
easy. We then train QA models using difficult and easy examples respectively and evaluate their
performance. We find that more difficult QA examples result in better performance;

3. We examine QA systems on QA examples with perturbed answers and find that QA models do not
make enough use of clues from the context, they instead simply learn how to match question and
answer from the training QA examples.
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Question type Definition Examples
HUM people, individual, group,

title
What contemptible scoundrel stole the cork from my
lunch ?
Which professor sent the first wireless message in the
USA ?
Who was sentenced to death in February ?

LOC location, city, country,
mountain, state

Where is the Kalahari desert ?
Where is the theology library at Notre Dame ?
Where was Cretan when he heard screams ?

ENTY animal, body, color,
creation, currency, dis-
ease/medical, event, food,
instrument, language,
plant, product, religion,
sport, symbol, technique,
term, vehicle

What relative of the racoon is sometimes known as
the cat-bear ?
What is the world’s oldest monographic music com-
petition ?
What was the name of the film about Jack Kevorkian
?

DESC definition, description,
manner, reason

What is Eagle ’s syndrome styloid process ?
How did Beyonce describe herself as a feminist ?
What are suspects blamed for ?

NUM code, count, date, distance,
money, order, other, per-
cent, period, speed, tem-
perature, size, weight

How many calories are there in a Big Mac ?
What year did Nintendo announce a new Legend of
Zelda was in the works for Gamecube ?
How many tons of cereal did Kelloggs donate ?

Table 5: Definition of each question type (Zhang and Lee, 2003) and corresponding examples in
SQuAD1.1 and NewsQA.

Experiments We employ two benchmark English extractive QA datasets SQuAD1.1 (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017) and question classification data (Li and Roth, 2002)2, with the
BERT-base-uncased model from Huggingface (Wolf et al., 2020)3 for both question classification and
QA.

Experiment 1: How QA models learn from different question types In Experiment 1, we aim to
investigate how QA models learn from QA examples with different question types. We adopt question
classification data (Li and Roth, 2002) to train a question classifier that categorizes questions into the
following five classes: HUM, LOC, ENTY, DESC, NUM (Zhang and Lee, 2003). Definitions and examples
of each question type are shown in Table 5. The QA examples in training data are then partitioned into
five categories according to their question type. Question type proportions for SQuAD1.1 and NewsQA
are shown in Table 6, with a high proportion of ENTY and NUM questions in SQuAD1.1, while NewsQA
has more HUM and DESC questions. We use QA examples of each question type to train a QA system
with increasing data size from 500 to 8000 with intervals of 500 and evaluate it on the test data, which
is also divided into five categories according to question type. The results are shown in Figure 6. We
find that a QA system learns to answer a certain type of questions mainly from the QA examples of the
same question type – this is more obvious for HUM and NUM questions in SQuAD1.1 and HUM, LOC
and NUM questions in NewsQA. For example, in Figure 6, with an increased amount of NUM training
examples, the performance of a QA system on NUM test examples substantially improves, whereas the
performance on the other question types (such as LOC) obtains only small improvements. In other words,
the knowledge to answer NUM questions for a QA system almost exclusively comes from NUM training
examples.

Experiment 2: How a QA model learns from difficult and easy examples? In order to analyse how a
QA model learns from examples with different degrees of difficulty, we firstly define difficulty as the

2https://cogcomp.seas.upenn.edu/Data/QA/QC/
3https://huggingface.co/bert-base-uncased
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LOC ENTY HUM NUM DESC

SQuAD1.1
Train set 11.4 27.6 20.7 24.5 15.5
Dev set 10.5 27.6 21.0 23.0 17.4

NewsQA
Train set 11.4 16.9 30.0 18.8 22.6
Dev set 12.3 16.9 32.2 17.8 20.5

Table 6: The percentage of question types in the SQuAD1.1 and NewsQA train and dev sets.

Figure 6: Visualization of F-1 learning curves for five QA systems trained on five question types
(HUM,LOC,ENTY,DESC,NUM), tested on the dev sets for each question type and the original dev set.
SQuAD1.1 (top) and NewsQA (bottom)

lexical overlap between the context and question in each QA example. The QA examples with high
lexical overlap are defined as easy examples as too many lexical cues would make it easier for a QA
system to learn (Hong et al., 2020). Secondly, we modify the context in QA examples to single-sentence
context which means the context only keeps the sentence in the original context which contains the
answer. Examples with single-sentence context are defined as easy examples as a shorter context makes it
easier to locate the correct answer, whereas examples with the original context are defined as difficult.

Then we train QA models on difficult and easy examples separately and subsequently evaluate the
trained models on difficult examples and easy examples respectively. The context-question lexical overlap
results on SQuAD1.1 and NewsQA are shown in Figure 7. With the same amount of data, the QA
system trained on QA examples with less context-question overlap (less-overlap system) can always
yields better performance (F-1 score) compared to the QA system trained on QA examples with more
context-question overlap (more-overlap system). Specifically, the less-overlap system is able to perform
well on questions with more context-question overlap, whereas the more-overlap system can’t achieve
comparable performance on questions with less context-question overlap – this is even more apparent on
the NewsQA dataset.

We show the experimental results of single-sentence context and original context on SQuAD1.1
and NewsQA in Table 7. The performance on easy (single-sentence) test data is always better than the
performance on the difficult (original) test data.

Experiment 3: Question-answer match Generally speaking, an ideal QA system is expected to be
able to find the correct answers using clues from the context via comprehension rather than using clues
from the answers alone with shortcuts. Therefore, we propose to corrupt the answers in QA examples. By
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Figure 7: Visualization of F-1 score change over different lexical overlap levels and overall dev set with
increased data size on Less Overlap and More Overlap SQuAD1.1 (top) and NewsQA (bottom)

Dev-original Dev-single-sent

SQuAD1.1
Train-original 80.61/88.25 81.75/89.50

Train-single-sent 75.61/83.64 81.49/89.34

NewsQA
Train-original 49.55/64.53 60.51/79.18

Train-single-sent 36.39/50.00 62.73/80.85

Table 7: Evaluation results (EM/F-1) of single-sentence context and original context QA examples on
SQuAD1.1 and NewsQA.

doing so we can examine the degree to which QA models are able to make use of clues from the context.
We propose a simple strategy to perturb/corrupt answers in training QA examples: random tokens, i.e.
randomly generate meaningless tokens to replace the original answers.

Such perturbed QA examples are answerable for humans, for example below:
Context: Super Bowl 50 was an American football game to determine the champion of the National

Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion
jysbdefziqvzbi defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to
earn their third Super Bowl title.

Question: Which NFL team won Super Bowl 50?
Original answer: Denver Broncos
Corrupted/correct answer: jysbdefziqvzbi
Humans can easily find the correct answer - jysbdefziqvzbi even if is a meaningless word. The goal of

this experiment is to examine whether a QA system is capable of finding such corrupted correct answers.
We perturb the answers in the development sets of SQuAD1.1 and NewsQA, then we evaluate the QA

models trained on the original training sets on these perturbed test examples. The average results of three
runs on SQuAD1.1 and NewsQA are shown in Table 8. The results reveal that corrupting the semantic
information of answer text causes a substantial performance drop (maximum ~25% F-1 score drop for
SQuAD1.1 and ~50% F-1 score drop for NewsQA) – the drop is even larger for NewsQA (~30 F-1 score
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Overall

SQuAD1.1
Original 66.97/80.96
Random tokens 55.99/61.40

NewsQA
Original 49.22/64.53
Random tokens 31.72/35.91

Table 8: Evaluation results (EM/F-1) on dev sets of SQuAD1.1 and NewsQA with corrupted answers

Figure 8: t-SNE visualization of randomly sampled Answer, Question and Context wordpiece repre-
sentations from 18 checkpoints in training process starting from checkpoint-0 (the vanilla BERT) to
checkpoint-17 (the BERT finetuned on SQuAD1.1), where Answer is in blue, Question is in red, Context
is in green.

drop), demonstrating that QA models fail to make enough use of clues from the context, showing a lack
of comprehension of the context and question.

Moreover, to further gain insights into the representations learned by the QA systems, we randomly
sampled 500 context-question-answer Wordpiece Johnson et al. (2017) representations from 18 check-
points of the BERT model during the fine-tuning process on SQuAD1.1 and use t-SNE van der Maaten
and Hinton (2008) to visualize these representations in Figure 8. The visualization clearly shows the
learning process of the QA system:

1. the representations of questions (red) are differentiated from the representations of context (green)
and answers (blue).

2. as the fine-tuning process continues, the representations of context and answer are gradually
separated.
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